Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks

Teaser Image

Abstract

Recent studies have shown that DNNs can be compromised by backdoor  attacks crafted at training time. A backdoor attack installs a backdoor into  the victim model by injecting a backdoor pattern into a small proportion of the training data. At test time, the victim model behaves normally on clean test  data, yet consistently predicts a specific (likely incorrect) target class whe- never the backdoor pattern is present in a test example. While existing backdoor  attacks are effective, they are not stealthy, The modifications made on training  data or labels are often suspicious and can be easily detected by simple data fi- ltering or human inspection. In this paper, we present a new type of backdoor att- ack inspired by an important natural phenomenon: reflection. Using mathematical  modeling of physical reflection models, we propose reflection backdoor (Refool) to plant reflections as backdoor into a victim model. We demonstrate on 3 computer vision tasks and 5 datasets that, Refool can attack state-of-the-art DNNs with high  success rate, and is resistant to state-of-the-art backdoor defenses.

Publication
The 16th European Conference on Computer Vision

Related